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Abstract 

We investigate criteria under which one may construct the energy tensor of a null radiation 
field from an algebraically special vacuum metric. The field bears the same relationship 
to the original metric as does Vaidya's to Schwarzschild's. As an example we generate a 
class of null radiation fields from a class of vacuum metrics without symmetry discovered 
by Robinson and Robinson. 

1. Introduction and Field Equations 

This paper  establishes a method  for construct ing the energy tensor  o f  a 
null r ad ia t ion  field f rom the metr ic  o f  an a lgebraical ly  special  vacuum 
gravi ta t ional  field. We  consider  a covar ian t  genera l iza t ion o f  the re la t ion-  
ship between the Schwarzschi ld metr ic  and  the Va idya  (1951) metr ic  and  
derive in tegrabi l i ty  condi t ions  for  the result ing field equations.  I t  follows 
as an interest ing consequence of  these condi t ions  that  the rad ia t ion  fields 
with twist ing rays  are much more  severely restr icted than  those with hyper-  
sur face-or thogonal  rays:  indeed,  in the twist ing case the field ampl i tude  is 
de te rmined  explicit ly by  the vacuum metr ic  up to  a cons tant  factor.  Our  
mot iva t ion  stems f rom the fact tha t  these fields might  be representat ive  o f  
r ad ia t ion  being emit ted  f rom a spinning mass. 

Rob inson  et al. (1969) have shown tha t  if  a spacet ime admits  a null 
vector  k u tangent  to a nonshear ing,  diverging congruence o f  affinely 
pa ramet r i zed  null  geodesic curves then coordinatesw 

x~ = (~, ~, ~, p) (1.1) 

t Supported in part by the National Science Foundation (GP-8868, GP-20033, and 
GU-1598), Air Force Office of Scientific Research under Grant AF-AFOSR-903-67 
and by the National Aeronautics and Space Administration under NASA Grant No. 
NGL 44-004-001. 
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may be chosen such that in a vacuum the main gravitational field equations 

k t~,Rv~ tok.~ = 0 (1.2) 

have the solution 

as2=2e2d~d~ + 2dZ(dp+ Zd~ + 2d~ + Sd~)  (1.3a) 

dZr := a(bd~ + bd~ + dcr) = k~dx u (1.3b) 

p2 := exp (2u) (p2 + ~22) (1.3c) 

S:=pu3- �88  ff~)+(pm+ ff2M)/(pz + Q 2) (l.3d) 

Z := pA - i(Q1 + A~2) (l.3e) 

Q := �89 exp (-2u) (bl - b2) (1.3f) 

A := a -1 al - ab3 (1.3g) 

K := 2 exp (-2u) L2 (1.3h) 

L := A - ul (1.3i) 

M := �89 exp (-3u) (Ul122 - U2211) (1.3j) 

where a, b, u, m, and U are functions of ~, ~, and ~ subject only to 

a # 0, U 3 = exp (-u)  (1.4) 

We use the notation 
df=f~ d~ +f2 d~ +f3 dX (1.5) 

for any funct ionf(~,  ~, ~r). 
Robinson & Robinson (1969) note that in a vacuum the remaining 

subsidiary field equations are equivalent to the vanishing of a form dC: 

dC := [p-3(m - im)]/1 d~ + [p-3(m + im)]/2 d~ 
+ {[p-3(m + iM)]/3 + p-4exp( -4u) I}pdX= 0 (1.6) 

where we define 
I := J22 + 2I-,J2 

J:=Ll  + L 2 

and use the notation 

df=f/1 d~ +f~2 d~ +j% p dZ +f/4 dW 

dW := Ad~ + ~d~ + u3 dX+ p-1 tip 

for any functionf(~,  ~, ~r, p). 

(1.7) 

(1.8) 

(1.9) 

(I.10) 
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We ask for conditions necessary and sufficient to ensure that if g,v is a 
solution of the vacuum field equations (1.2) and (1.6), then there exists a 
function H(~, ~, cr, p) such that the substitution 

ggv --> guy + 2Hp4(p 2 q-/22) -1 kt, kv (1.11) 

yields a solution of Einstein's equations with an energy tensor proportional 
to k,k~. Calculation shows that the resulting energy tensor is associated 
with theflux of H: 

Ru" __> Ru ~ + H~ 3 p4(p2 q_/22)-1 k,,k~ (1.12) 

To elucidate these conditions we remark that substitution (1.11) may be 
expressed equivalently by 

m --+ m + Hp 3 (1.13) 

which in turn implies that 

dC --+ dC + HI, d~ + 11/2 d~ + H/3pdZ (1.14) 

We find that the main equations are satisfied only if 

[t/4 = - 3 H  (1.15) 

and that the subsidiary equations may be written 

dC = HIs pdZ (1.16) 

We thereby obtain 
HI, =0 ,  H / z = 0  (1.17) 

using equation (1.14). 

2. Integrability Conditions 

The commutation relation 

f/ta 21 = -�89 exp (2u) [2ip/2f/3 + �89 - / 7 )  f/4] (2.1) 

for an arbitrary functionf(~, ~, rr, p) provides an integrability condition for 
the field equations (1.15) and (1.17). From the Jacobi identity for the 
derivatives defined by equation (1.9) follow the relations 

(p-1 /2) /3  = �88 K) (2.2) 

�89 - R)]/3 = (p-' L3)/1 - (p-1L3)/2 (2.3) 

Substituting Jacobi relation (2.2) into commutation relation (2.1), and 
using the field equations, we integrate, providing that /2  does not vanish 
identically, to obtain 

H = h(~, ~) [exp (2u) Op] -3 (2.4) 

Defining a function G(~, ~, or) by 

G := [ln(p -~/2)]/, - 2L (2.5) 
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we use the commutation relation to establish that 

G2 = a l  (2.6) 

From equations (1.17) it follows as a second integrability condition that 

G = G(~, ~) (2.7) 

Equations (1.17) together with the compatibility condition (2.6) then 
explicitly determine h to be 

h = ~exp(3 f Gd~) (2.8) 

where r/is a constant. 

3. Special Solutions 

In order that substitution (1.11) results in a non-trivial radiation field it is 
necessary that 12 satisfy one of the conditions: 

/ 2 = 0 ;  (p-1 12)/3 ~ 0 (3.1) 

In the first instance k ~' is hypersurface-orthogonal; the radiation field 
belongs to a class mentioned by Robinson & Trautman (1962). In this case, 
in suitable coordinates, Hp 3 is a disposable function of cr. The Vaidya (1951) 
metric constitutes an example of such a field. Among the excluded vacuum 
fields satisfying neither of equations (3.1) we find stationary fields with 
twist, such as those of Kerr (1963), Newman et al. (1963), and Robinson 
et al. (1969). 

To construct an example of a field in accordance with the second of 
equations (3.1) we consider a class of vacuum metrics without symmetry 
discovered by Robinson & Robinson (1969), characterized by 

L 3 = 0, (p-i 12)/3 # 0 (3.2) 

Imposing as coordinate conditions 

a = 1, u3 = 0 (3.3) 

we then obtain 
12,33 = 0 (3.4) 

from the Jacobi relations (2.2) and (2.3). The coordinate conditions deter- 
mine cr up to the product of a shift in origin, 

x~ -+ {~, ~, ~ + a (~ ) ,  p} (3.5) 

and a change in scale, 
x ~ --> {~, ~, cr/~(~, ~), p~(~, ~)} (3.6) 

Thus, fixing the origin of ~r by writing 

12 = �89 (-2u) (L,2 - L,I) cr (3.7) 
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i t  becomes appa ren t  tha t  in tegrabi l i ty  condi t ion  (2.7) is satisfied. Equa t ion  
(2.8) then results  in 

H = ~(ap) -3 (3.8) 

where ~ is a cons tan t ;  this expression is manifest ly invar iant  under  changes 
in scale. 
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